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The bulk gas motion in a circular-port rocket motor is described using a rotational, incompressible, and viscous
flow model thatincorporates the effect of wall regression. The mathematicalidealizationdeveloped is also applicable
to semi-open porous tubes with expanding walls. Based on mass conservation, a linear variation in the mean axial
velocity is ascertained. This relationship suggests investigating a spatial transformation of the Proudman-Johnson
form. With the use of similar arguments, a temporal transformationis also introduced. When these transformations
are applied in both space and time, the Navier-Stokes equations are reduced to a single, nonlinear, fourth-order
differential equation. Following this exact Navier-Stokes reduction, the resulting problem is solved using variation
of parameters and small-parameter perturbations. The asymptotic solutions for the velocity, pressure, vorticity,
and shear are obtained as function of the injection Reynolds number Re and the dimensionless regression ratio
o. By way of verification, it is shown that, as a/Re — 0, Yuan and Finkelstein’s solutions can be restored from
ours. Similarly, as a/Re — 0, Culick’s inviscid profile is recovered. It is demonstrated that, for a range of small
a/Re, inviscid solutions are practical. However, for fast burning propellants under development, the inviscid
assumption deteriorates. Because it is applicable over a broader range of operating parameters, the current
analysisleads to a closed-form mean-flow solution that can be used, instead of the inviscid profile, to 1) prescribe an
adjusted aeroacoustic field, 2) describe the so-called acoustic boundary layer, 3) evaluate the viscous and rotational
contributions to the acoustic stability growth rate factor, 4) track the evolution of hydrodynamic instability, and
5) accurately simulate the internal gasdynamics in rapidly regressing motors and cold-flow experiments with

medium-to-high levels of injection.

Nomenclature

permeance; in live propellants, p;/p — 1
porous boundary or burning surface area, 2raz
cross-sectionalarea, wa?

instantaneous wall radius, m

wall regressionrate, m/s

similarity function, F /Re

dimensional pressure, Pa

injection Reynolds number

normalized radial coordinate,r /a

radius, m

time, s

velocity (i,, u.), m/s

normalized axial coordinate, z /a

axial coordinate, m

dimensionless regression ratio

difference

reciprocal of the injection Reynolds number
transformed radial coordinate, %rz

= recurring coordinate, %711’2
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= control volume

= kinematic viscosity, m*/s
density, kg/m?

normalized shear stress
normalized stream function
= normalized vorticity
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Subscripts

porous boundary or burning surface

Ccross section

spatial mean value at a given cross section

radial or axial component; term used for derivatives
solid phase

= temporal derivative
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I. Introduction

UMEROUS studies have addressed the motion of an injection-

driven fluid inside a tube with transpiring walls. Past and
recent interests have covered a broad spectrum of technical ap-
plications. These include paper making,' sweat cooling2* flow
filtration;*~¢ boundary-layer control,’~® and internal flow model-
ing in solid rocket motors. Ongoing interest is evidenced by the
rigorous mathematical analyses carried out recently by Banks and
Zaturska,'® Zaturskaand Banks,!' Cox and King,!? King and Cox,'?
and Lu.'*'5 Internal flow modeling has received considerableatten-
tion due to the central role that it occupies in the assessment of
aeroacoustic instabilities in rockets.!®~!® In part, this is due to the
strong dependenceof stability integralson the precise determination
of velocity and pressure fields. The daunting task of describing the
gasdynamics inside rocket motors has, hence, motivated, over the
last four decades, the quest for several mathematical idealizations
of increasing level of refinement.

To better understand the evolution of the problem at hand, note
that the internal flow has been traditionally viewed as consisting
of a superposition of mean and unsteady fields. Also note that the
unsteady field is largely prescribed by the mean-flow motion. In
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view of this intimate coupling, one is justified in seeking both flow
components under the same flow conditions and using comparable
orders of accuracy.

The first adequate mean-flow approximation was presented by
Culick" in 1966. This constituted a visible improvement over the
one-dimensionalsolution used in previous studies 2° Despite its ne-
glect of small viscous effects, Culick’s steady and incompressible
profile! was rotational; it could satisfy the fundamental bound-
ary conditions associated with an idealized rocket motor. Unlike
its predecessor?’ it could now fulfill the no-slip restriction at the
wall by ensuring that gases enter the chamber perpendicularly to
the burning surface. Because it is inviscid, Culick’s profile!® was
exact in the limit of an infinitely large injection Reynolds num-
ber Re. Overall, it was convenient, simple, and reasonably accu-
rate over a practical range of Reynolds numbers exceeding 1000.
It also lent itself to both numericaP!' and experimental verifications
by Dunlap et al.?*> and Yamada et al.>* Aside from a small region
near the head end of the chamber, Culick’s profile' appeared to
approximate closely the values measured in a porous tube with real
gas. This gave Varapaev and Yagodkin®* the impetus to use it as
the basis for their investigation of hydrodynamic instability. In the
same context, it has been recently employed by Casalis et al.>> and
Griffond et al.?6 to investigate the evolution of turbulence in both
planar®® and axisymmetric configurations 2* Whereas Varapaev and
Yagodkin?* have undertaken a preliminary study of the linear sta-
bility of Culick’s profile,'® Casalis et al.?* and Griffond et al.?® have
employed a modern approach from which results could be used
to predict experimentally measured turbulence. These efforts have
suggested the presence of a hydrodynamic source of instability that
has not yet been accounted for in combustion stability theory. A
similar conclusion has been reached by Flandro and Majdalani,'®
who have attributed the discrepancy to one-dimensionallimitations
undermining the standard formulation in use today”-?® When a
one-dimensionalrepresentationis adopted to describe the unsteady
field, two- and three-dimensionalinteractionsare inadvertently pre-
cluded. Several sources of instability are consequently suppressed,
including turbulentenergy. This inherentrestrictionexplains the in-
ability of the traditional formulation to physically account for flow
turningand other vorticity-drivenphenomena. Several corroborative
studies are now available, for example, in which the onset of turbu-
lencein porous-walledchannels or tubes is confirmed to be a source
of instability. To name a few, one may cite Lee and Beddini,?**
Beddini and Roberts,>! Sabnis et al.,?” Tissier et al.,>* Roh et al.,**
and Apte and Yang.3® Others in which vortex-driven phenomena
have emerged include studies of the parietal vortex shedding that
has been identified to be a source of instability that eludes traditional
theory.36=40 Naturally, the production and propagation of so-called
crawling vorticesis strongly influenced by the mean-flow motion.”’
In addition to its pertinence to studies of hydrodynamicinstability,
the mean-flow profile has also been influential in the development
of unsteady flow dynamics used to describe the aeroacoustic wave
motion inside rocket motors.*! =%

In Flandro’s*! continued attempts to point out the shortcomings
of using one-dimensional plane wave solutions,*® he pursued mul-
tidimensional formulations for the unsteady core flow.*! Initially,
Flandro presented a simple analytical solution for the oscillatory
field thataccounted for the presence of solid boundaries.*? His early
model was two dimensional only artificially because it ignored the
downstream convection of unsteady vorticity together with the spa-
tial depreciation of Culick’s radial velocity.!” It was, however, valid
in a small region above the burning surface, where most signifi-
cantinteractionsevolved. An asymptotic solutionby Majdalani and
Van Moorhem followed.**** The latter employed the exact Culick
profile' butignored the axial dependency.

Flandro'¢ later presented an inviscid solution that faithfully re-
tained Culick’s profile!® and the correct spatial dependency. Shortly
thereafter, Flandro produced a multidimensional solution that re-
tained viscous effects.!” A practically equivalent solution based on
multiple scales was independently arrived at by Majdalani and Van
Moorhem** Majdalani and Van Moorhem*’ would later demon-
strate the agreement between both contemporaneous solutions and
full numerical simulations. Their results were also found to agree

with test measurements acquired by Barron et al.,* Brown et al.,*
and Dunlap et al.** The multiple-scale solution was also capable of
elucidating the acoustic boundary layer, which until then had been
the subject of much controversy?>°

The Cartesian slab-rocket geometry has also been analyzed by
Majdalani and Roh®!' and, for an arbitrary mean-flow profile, by
Majdalani®?> and Majdalani and Van Moorhem.>® Pursuant to these
studies, a fully rotational and viscous representation of the aeroa-
coustic field has been established. Besides being of higher order,
the newly developed expressions by Majdalani;’?> Majdalani and
Van Moorhem,>® and Majdalani and Flandro’* have offered the ad-
vantage of accommodating any conceivable mean-flow profile. Be-
causethe level of precisionachievedin these recentstudiesis limited
by the accuracy of the mean-flow solution, the need arises today for
an improved mean-flow approximation that is consistent with the
unsteady flow details.

In addition to that, a more comprehensive mean-flow solution
can 1) improve the accuracy of time-dependentmodels, 2) provide
a better platform to investigate hydrodynamic stability, and 3) en-
hance our flow predictive capabilities; it also serves to extend the
range over which current models apply. In fact, according to Yuan®>
(cf., p. 267), there are numerous problems of real interest that ex-
hibit injection Reynolds numbers in the 10-1000 range. One such
example corresponds to a recent core-flow simulation carried out
at the Center for Simulation of Advanced Rockets (CSAR), where
an injection Reynolds number of 47.6 was held constant throughout
the numerical study.>®

For the foregoing reasons, it is the purpose of this paper to obtain
a mean-flow solution that not only satisfies the basic boundary con-
ditions, but is also capable of incorporating viscous forces and wall
regression. A directconsequenceof such an effort will be the attain-
mentofan internal flow approximationthatis consistentlyrotational
and viscous in both its mean and oscillatory components. Further-
more, it is anticipated that the higher-order approximation will be
useful over a broader range of operating parameters, including the
10-1000 range. In actuality, the need for a higher approximation
has been alluded to in recent studies by Lee and Beddini***° and
Apte and Yang.>” In the former study,?®-* retention of the Reynolds
number was found to be important due to the impact of viscous dis-
sipationon the acoustic boundary layer at constantfrequency.In the
latter study,” a numerical simulation of a nozzleless rocket motor
was carried out in which Taylor’s inviscid representation was found
to be inadequatefor Re < 500 (Ref. 57, pp. 807, 808). The search for
a higher approximation is further motivated by the need to model
motors with fast burning propellants, namely, those being devel-
oped for high-acceleration interceptor vehicles. In that context, it
may be argued that the availability of a closed-formsolution can be
instrumental in validating numerical simulations of the regression
process (private communication, R. A. Fiedler, CSAR, University
of Illinois at Urbana-Champaign, 2001). Aside from the foregoing
reasons, note that this work serves to extend the planar solution
presented recently by Zhou and Majdalani>®

In principle, the paper can be divided into two parts. In the first,
Goto and Uchida’s approach® is applied to reduce the Navier-
Stokes system into a single Proudman-Johnson equation®® The
procedure involves a spatial transformation that presumes a lin-
early varying axial velocity and a temporal transformation that is
granted by a time-invariantdimensionlessregression. In the second
part, we follow Yuan and Finkelstein®® and Terrill and Thomas®!
in perturbing the resulting nonlinear equation. In the process, we
find it necessary to apply the method of variation of parameters in
a quadruple fashion. At length, a higher-order mean-flow approx-
imation is obtained for the velocity, pressure, vorticity, and shear
stress distributions. These flow attributes are described in addition
to limiting process verifications that are occasionally resorted to.
Our results clearly indicate the existence of a range over which
the inviscid approximation deteriorates. Conversely, the suitability
of Culick’s profile!>**¢ is demonstrated over a substantial range of
conditions characterizing solid rocket motors. A numerical com-
parison that is identical to that described by Zhou and Majdalani’®
is also carried out; it will be omitted here in the interest of
brevity.
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II. Mathematical Model

The internal-burning cylindrical grain of a solid rocket motor is
idealized as a long tube with one end closed. The tube’s circumfer-
ential walls are assumed to be sufficiently permeable to allow the
radial inflow of a secondary fluid. The incoming stream turns and
merges into the primary axial flow. The forthcominganalysisis gen-
eral enough to accommodate both liquid and gaseousinjectants. As
the circumferential walls expand at a speed equal to a, the head end
is assumed to be sufficiently compliant to stretch in the radial di-
rection while remaining perpendicularto the tube’s axis. As shown
in Fig. la, a coordinate system can be chosen based on axisym-
metry. With this choice, the incompressible mass and momentum
conservation equations may be written as
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where variables have their usual significance or as given in the
Nomenclature. Boundary conditions are
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and V is the absolute velocity at the wall. These conditions allow
for a time-dependentradius at 7 = a(t), where the porous wall is lo-
cated. Along this surface, the no-slipmechanismdictatesa zero axial
velocity, i, =0, and a radial influx according to u, =—V. Along
the centerline, 7 = 0, symmetry is reflected in both du./dr =0 and
i, =0. The final boundary condition applies to the head end, z=0,
where the infinite impedance requires setting iz, = 0.

A. Basic Assumptions

Equations (1-4) are written under the following implicit assump-
tions:

1) The bulk flow is incompressible and isothermal.

2) Body forces are absent.

=0

2a(t) E

b)

Fig.1 Schematic of a cylindrical motor showing a) coordinate system
used to capture wall regression and b) control volume used in the mass
balance calculation.

3) The kinematic viscosity v is constant.

4) The fluid enters the tube at a spatially uniform velocity V (¢).
5) Swirling effects are ignored.

6) The azimuthal component of velocity is zero.

7) Laminar conditions are prevalent.

8) No heat is transferred to the gas.

B. General Mass Balance Requirement

Consider in Fig. 1b a control volume ¥ extending from the head
end to an arbitrary position z. The average axial flow velocity
it,,(Z, 1) at a given cross section A. = wa? can be determined from

1
L;,”(E,Z‘)ZA_/ ﬁ(za f,t) dA (5)
cJa,

where u is the local axial velocity and dA = k dA is the differential
surface-area vector. When A, (z) =2maz is used to denote the vol-
ume’s circumferential area, conservation of mass across ¢ requires
that

)
—/pd19+/ pit - dA — pA,V, =0 ©)
ot J, N

where d =ma’z and V,, is the fluid velocity with respect to the
wall. Recalling that the flow is incompressible, one may substitute
Eq. (5) into Eq. (6) and integrate from O to z. One obtains

A, Z 9A,
=V, - —
A, A, ot

Uy, =

z , z
=22(V, —a) =22V (7)
a a

where V =V, —a is the absolute inflow velocity with respect to
an inertial reference frame. Equation (7) indicates that the mean
velocity is linearly proportional to the axial coordinate. Because
integration in Eq. (5) does not affect z, this axial dependence in u,,
can only be realized when u.(z, 7, t) =z f (7, t). This linear form is
a familiar product of a classic similarity transformation.

C. Mass Balance at the Propellant Surface

In problems for which fluid injection and wall motion are con-
trolled by separate processes, V;, and a are independentparameters.
In solid propellant rocket motors, however, the relative velocity of
the gas with respect to the regressing walls is intimately related to
the wall regression speed. To see this, one must recognize that, in
any giventime interval,the mass of propellantburned must equal the
mass of gases ejected into the chamber. Because A, is the burning
surface in a solid propellant motor (or the sublimating surface in a
cold-flow simulation of the burning process*’-°>¢*) conservation of
mass at the solid-gas interface requires that pA,V, = p;A,a. The
gas velocity with respect to the wall becomes

Vi = (os/p)a ®)

where p; is the density of the solid phase (before solid propellant
pyrolysis or cold-wall sublimation). From Eq. (8), the absolute ve-
locity can be seen to be

V = (p,/p— Da = Aa ©)

where A = p,/p — 1 is the wall permeance or injection coefficient.®

Because A =V /a, it is a measure of wall permeability. In rocket
motors, o, ~ 2000 kgm=3, p ~20kg- m~3, so that A ~ 100.

D. Similarity in Space
The condition of incompressibility enables us to use the Stokes
stream function ¥ and reduce the Navier-Stokes equations. Starting
with
=i—_, u, =—;M (10)
r r oz
onemay follow Goto and Uchida®® and write the stream functionin a
formthatis consistentwith mass conservation,namely,a Proudman-
Johnson form® that can lead to a linear Z variation in the axial
velocity. Thus, let we

U = viF(r 1), r=r/a(t) (1)
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In terms of F' , the axial and radial velocities become

_ 19y 10(wzF) vzlaF
U, = -—— =-——— = —=—— (12)
r or r or atr or
10y 19(zF F
g =-2_ 12020 _ vE (13)
r oz r oz ar

Because the radial velocity is independent of z, vorticity simpli-
fiesinto Q = |V x u| = — du_/dr. The vorticity transport equation
becomes Q, + i - VQ =vV?2Q, namely,

d (o, d (_ du. d (. du, a9 |19 [ou.
=) +=lt:—=)+=lu,—=) —v=|z="—=])| =0
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(14)

To apply Egs. (11-13), partial derivatives must be carefully evalu-
ated. These involve
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E. Reduced Navier-Stokes Equation
Substituting Egs. (15) and (16) into Eq. (14) yields

{(—vz/a®)(F /1) + @vzrja*)(F, [r), + (ua/a*)(Z/r)F,
— (VZ/a’)(F,/r)* + (V*2/a)(F [r)(F, [r),

+/r)E ), + (Ffr) ) =0 (17)

At this point, it is expedient to introduce the dimensionless regres-
sion ratio

a(t) =aalv (18)

where « is a Reynolds number based on the regression speed of the
walls. Inserting Eq. (18) into Eq. (17) renders, after some algebra,
the Proudman-Johnson-type equation®

{(F./r) + 10+ F)/r +arl(F,/r),

—(F,/r =2a)F [r — (@ Jv)(F,,/r)} =0 (19)
Boundary conditions may be obtained from Eq. (4). These translate
into

F,/r =0, F/r=Re at r=1 (20)

(F,/r). =0, F/r=0 a r=0 (D
where Re=Va/v is the dynamic Reynolds number based on
the absolute injection velocity. Equation (19) embraces Yuan and
Finkelstein’s®' and is consistent with that solved numerically by
Goto and Uchida® Note that Re and o are generally unrelated.
However, for cases involving propellantcombustion or solid-phase
sublimation, Eq. (9) can be multiplied by a/v to obtain Re = Ac.
Under these auspices, Re and o become intimately related by the
solid-to-gasdensity ratio. For illustrative purposes, a range of phys-
ical parameters corresponding to solid propellants is taken from
Sutton® and compiled in Table 1 (cf., Ref. 64, pp. 370, 375, 418,
and 435). We note that data regarding viscosity are based on the
model by Lucas, which remains applicable at high temperatures and
pressures (see Ref. 65). We also note that the maximum regression
speed is taken from a recent work by Beckstead.®®

Table1 Range of parameters for solid rocket motors

Parameter Symbol Range
Grain radius, m a 0.005-3.5
Grain density, kgm_3 Ps 1,500-2,500
Gas density, kgm™3 P 10-20
Kinematic viscosity, mZs~! v 1070-107°
Grain burn rate, ms™! a 0.0005-0.1
Gas injection velocity, ms ™! Vi 0.0075-10
Regression ratio o 0.125-35,000
Injection Reynolds number Re 35-3.3 x 10°

F. Similarity in Time

To make further headway toward a more manageable equation,
we assume a self-similarity in time that can be reasonably justi-
fied in practice. Using the same argument presented by Uchida and
AokiS? we first apply the transformation F(r, r) — F[r, a(¢)] and
then define « to be invariant in time. To realize this condition, «
must be specified by its initial value, namely,

a=aalv=ayay/v 22)

where a, and a, represent the initial radius and regression rate. The
ensuing transformationcan be arrived at by integrating Eq. (22) with
respect to time. One obtains

a(t) = apy/ 1 + 2vatay” (23)

From a physical standpoint, our idealization is based on a decel-
erating regression rate that follows a plausible model according to
which aa = const. Thus, as the internal radius increases, the rate of
regression decreases. Far from being general, this limiting feature
is used to permit a closed-form solution. In actual rocket motors,
one must recognize that propellantburning exhibits a more complex
regression behavior.

G. Idealized Thrust Behavior

Pursuant to the mass conservation details in Sec. II.B, one may
apply the integral form of momentum conservation to estimate the
axial thrust force due to gas ejection. Using B to represent the O(1)
momentum correction coefficient, one gets

F= / pi> (2,7, 1) dA = BpA i
A

c

g= A;laj/ iz, 7, 1) dA (24)
A

c

Then, from Eq. (7), one can substitute the value for the mean axial
velocity u,, and cross-sectionalarea A, to obtain

F = Bpowa*[2L(V, — a)/a)* = 4nBpL*(V, — a)* (25)
Imposition of ad = av = const gives
F = 4nBpL*[V, —av/a@))? (26)

Thus, in cold-flow experiments having fixed blowing speed with
respect to the wall (V, = const), the thrust force will increase ac-
cording to Eq. (26) as the internal radius of the chamber increases
in time.

In a solid propellant rocket motor, however, the injection speed
with respect to the moving wall is related to both the propellant
density along the burning interface and the speed of regression via
Eq. (8). At the outset, Eq. (25) becomes

F=4maBoL*(p,/p — 1)*a* =4nBpL*(av)?A*/a® ~ A*Ja* (27)
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Because A =p,/p — 1 is constant for a homogeneous propellant
(where the solid propellant density p, remains uniform), Eq. (27)
suggests a regressive thrust with increasing a(f). Nonetheless, a
neutral thrust is also conceivable by designing a propellant whose
density ratio increases proportionately with the inner radius accord-
ing to A ~a(t). Similarly, a progressive thrust can be accomplished
by designing a propellant with a density ratio that increases at a
faster rate than the radius, that is, for A /a increasingin time.

H. Self-Similarity Solution in Time and Space
Under the provision of a time invariant «, we find it useful to

define
F = F/Re, n=1r?, e=1/Re (28)

Backward substitution into Eq. (19) yields

el 2055 4 2 +3)d3F+4 EF L pLE _drEr
T T Yap P dp dp

(29)
with

)=1, F(0)=0

Ll
2

lim J_ — =0 (30)

n—0

Next, we solve this set using asymptotic tools.

III. Analytical Solution
Following Terrill and Thomas?' and Terrill,®® we start by ex-
panding F = Fy + & F; + O(s?) and substitute back into Eq. (29).
At leading order, a basic solution is obtained, namely,

#F, dF, dF,
Fo—r - ——2=0 (31)

The solution to this equation can be guessed to be Fy = sin(wn).
When 6 = ry is defined, the first-order equation of O(g) may now
be written as

3

Fy d’F, . dF;
— cosf + sinf—— — cosO F)

ino
SRR 462 a0

2 4 .
=|—afb +3)cos® + —asinh — 20 sinf (32)
bid bid

A. Variation of Parameters

To make headway, one must guess that a partial solution must be
Fy, = cos 6. The variation of parameters approach can then be used
to find the correction multiplier based on Fy, = C(6) cosf. Thus,
backward substitutioninto the homogeneous part of Eq. (32) yields

C" sinf cosh® —2C"sin*0 —C" =0 (33)
so that
C0) = Kptan6 + K0 + K, (34)
The complete homogeneous solution becomes
Fi, = Kysin6 + K0 cosf + K, cos6 (35)

where Ky, K|, and K, are yet to be determined. The method of
variation of parameters is applied once more by turning the three
integration constants into undetermined functions. Thus, we set

Fi(0) = Ky(0)sin6 + K (0)0 cosb + K,(6) cos6 (36)

Substituting Eq. (36) into Eq. (32) leads to

K;sin6 4+ K6 cos6 + K cosf =0 37
K{cos® + Ki(cosf —6sinf) — K sinf =0 (38)
K;sin® 6 + K| (2sin* 6 + 6 cos@ sinf) + K, cos 0 sinf

= —[Qa/m)0 + 3]cosO + (4o /) sinf — 20 sind (39)

Solving Egs. (37-39) simultaneously enables us to determine the
variable coefficients. These are found to be

= (oe/ﬂ)[—& cscl + 3 batan %9 + (cos6 — 0 sin@)]
—%csc@—%sin&—&cos&—S(@)—i—CU (40)
= (¢/n)(0 cscO — 3lntan16) + 2esch + S@O) + €1 (41)
Ky = (a/m)[35(8) — 0 cos6 — sinf — 62 csch]

—2cos0 +0sinf — 20 csch — $1(0) + C, (42)
where

6 6
S(@):/ dcscode, Sl(e)=/ ¢ cscpdp  (43)
0 0

In series form, these integrals become

(1 _21—2k)
S(x) =x+ Z — (Z = >—(2k . L2k

k=1 n=1

(1-2!
Si(x) = —x + Z (Z )(lc+—l)7t2")XZk+2 (44)

k=1 n=1

B. First-Order Solution
To recapitulate, we recall that & = 71 and combine the basic and
first-order solutions for /. We obtain

F =sin0 + ef(@/m)[3 tatan 16 (sind — 6 cos§) — 20] — 2
4+ (0 cosf —sin6)S(O) + [3(a/7)S(O) — S1(0)] cos b

+ Cy0 cosb + C, sin9+C20036} 45)

The remaining constants can be determined from the boundary con-
ditions given by Eq. (30). One finds

Co=—@/m)+ Qa/m*—1)
—S(Lx) 6a/n? + 1) + (2/m) S, (i7) (46)

¢ =[a+2+5(in)], C=2 47)

At this juncture, the axial and radial components of velocity
and pressure can be evaluated. One finds Culick’s'® or Yuan and
Finkelstein’s®! components to be recoverable from Eqs. (45-47).
Because it is asymptoticin nature, Eq. (45) can faithfully reproduce
viscous and regression effects so long as ¢ and e« are small, re-
spectively. Practically, the range of applicability encompasses both
cold-flow and rocket motor applications wherein both ¢ and e« are
smaller than 0.1.

To avoid singularities at the core, however, we resort to 1 as our
independentcoordinate for calculations and plots. To maintain gen-
erality, we present variables in the following dimensionless form:

Vv =1/a’V =zF
Q=Qa/V =—z(F/r), = —z/2F,,.  p=p/pV> (48)

w, =i,V =—F/r=—F/J2n

MZZIZZ/VZ(Z/V)F,ZZFW, um=ﬁm/V=22 (49)

z=7z/a,

Pursuantto these choices, the axial velocity normalized by the mean
axial velocitybecomesu. /u,, = % F,.Inlike fashion,the normalized
radial pressure loss measured from the core can be determined.
Starting with

py=~[sF, +asF + (F/n’] (50)

one may integrate from the core to any radial position. The resulting
drop is found to be

— p(0,2)] = eF, + aeF + 0~ (LF)" = ¢F,(0)
(5D

Ap, = ~[p(1. 2)
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Similarly, the axial pressure drop measured from the head end
can be written as

Ap. = p(n,2) = p(n,0) = 22 {e[(« + $n7") F, + 2nF,,,

+Qan — DF,, | — (F)* + FF,(1 — 57"} (52)

Finally, the shear stress may be determined from Newton’s law
for viscosity. One finds

t=17/pVi=—uQ/pV? = ez/2nF,, = —eQ  (53)

where the linear relation with mean-flow vorticity is apparent. At
the wall, Eq. (53) gives 7, =¢zF,, (%) =—eQ(1).

IV. Illustrations

To examine the effects of viscosity and wall regression, the main
flow attributes are now described over differentranges of the control
variables. This description is hoped to aid in interpreting the sig-
nificance and limitations of the higher-orderapproximation. This is
accomplishedby observing the behavior of flow streamlines, veloc-
ities, pressure distributions, and shearing stresses at the wall.

A. Streamlines

InFig. 2, streamlinepatternsare shown for two disparate values of
the Reynolds number, both with and without wall regression. From
Fig. 2a, it may be inferred that, in the absence of wall motion, only
slight differences in streamline curvatures arise near the head end
despite the two orders of magnitude separating the Reynolds num-
bers. Differencesin streamline curvatures and, hence, the flow turn-
ing speed, become more appreciable in the downstream portions.
One expects these differences to be more pronounced in elongated
rocket motors. The effects of viscosity are clearly more significant
in the downstream sections of the tube. Thus, as the Reynolds num-
ber is decreased from 1000 to 10, the viscous decay of the radial
velocity component takes place more rapidly. As a result, the flow
turning speed is increased, leading to a sharper streamline curvature
near the walls.

Figure 2b, on the other hand, indicates that lowering the Reynolds
number causes the flow to become more sensitiveto changesin wall
regression. This explains the incapacity of (large Reynolds number
Re) inviscid flows in capturing the wall motion. As can be inferred
by inspectionof Eq. (29), the determining factor appears to be « /Re
or 1/A. The smaller this factor is, the less sensitive the flow will
be and the more closely will it resemble the inviscid analog. Far
downstream, however, the otherwise negligible discrepancies be-
tween viscous and inviscid flows with either stationary or expand-
ing walls are magnified. This is due to the downstream propagation

0.5~

n

a)

b) Axial coordinate, =

Fig. 2 Influence of the regression rate on the streamlines for - - -,
Re =10 and —, Re = 1000.

and buildup in cumulative errors caused by suppressing viscous dif-
fusion. As confirmed by Lee and Beddini,**-* retention of viscous
effects is clearly necessary, especially when tracking the inception
of turbulence in the presence of periodic disturbances. Figure 2b
also indicates that the effect of fast wall expansion is to reduce the
flow turning speed, for example, for Re = 10. The higher the regres-
sion speed, the longer will the radial-to-axial velocity ratio be large
while approaching the core. The curvature of an incoming stream-
line is, thus, increased with a. A purely hypotheticalcase arises, for
instance, when the walls regress at nearly the same speed as that of
the fluid entering the tube, that is, a = V. Under such conditions,
the expansion process offsets the effect of injection to the point of
forcing streamlines to become perpendicularto the walls.

B. Axial Velocity

Figures 3 and 4 show the behavior of axial velocity profiles (nor-
malized by their mean values u,,) over a range of Reynolds num-
ber Re and «. Similar trends to those associated with streamline
curvatures may be observed. Specifically, a greater sensitivity to

2_

uZ /um

a)

a=100

b)

Fig. 3 Influence of the regression rate on the axial velocity for —,
Re =100; - - -, Re = 500; and ---, Re = 1000.

8_
1 7 Re=10

Re = 1000

0.0 T T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5
b) n
Fig. 4 Sensitivity of the axial velocity to the regression rate (—, 0;
---,20;----,40;---,60;----,80;and - - - -,100): ata) moderate injection

Reynolds number and b) large injection Reynolds number.
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wall regression is observed at smaller values of Reynolds number
Re. Figure 3 indicates that, as « changes from 10 (Fig. 3a) to 100
(Fig. 3b), the centerline velocity increases from 1.63 to 2.15 times
the average velocity for a Reynolds number of 100. This 32% in-
crease in the centerline-to-mean velocity ratio is quite significant
by comparison to the 7 and 3% increases observed at Re = 500 and
1000, respectively. The reduced sensitivity to wall motion can be
attributed to the diminished role of viscosity at a higher Reynolds
number. Note that, when the walls are made permeable and allowed
toexpand, the 2.15 overshootoveru,, (shown in Fig. 3b) exceedsthe
factorof 2 associatedwith a fully developed Poiseuille flow in a tube.
The increased centerline-to-mean velocity ratio in a porous-walled
channel can be ascribed to the injection stream, whose contribution
to the axial velocity is a skewed spatial function thatis largest along
the centerline.

For fixed Reynolds number Re, the regression rate is now varied
by equal increments in Fig. 4 over the range 0-100. In Fig. 4a, a
significant variation in the centerline-to-mean velocity ratio is ob-
served ranging from 1.57 to 7.41 as « is increased from 0 to 100.
This 372% speed augmentation at the centerline can be achieved
or even exceeded when « is prescribed in a manner to be of the
same order or larger than Re. When this is no longer the case, such
as in Fig. 4b (where Re =1000), the mean-flow overshoot at the
centerline is increased only from 1.57 to 1.63; this marks a mere
4% magnification for the same variationin «. We conclude that the
centerline-to-meanvelocity overshootis sensitive to the relative ex-
pansion speed and, therefore, commensurate with the size of o/Re.
For sufficiently small «/Re, the centerline-to-mean velocity ratio
asymptotes to 1.57 or %n. This ratio is due to the mean velocity
being 2z according to Eq. (49) and to the inviscid axial velocity
being u.(r,z)=nz cos(%nrz) and hence equal to 7z at the cen-
terline. It also coincides with the center-to-mean velocity ratio in a
planar channel. In the latter case, u.(x, y) = %JTX cos(%ny) or %nx
along the midsection plane, whereas the mean velocity is simply x
(Ref. 53).

From a practical perspective, Fig. 4 clearly indicates that the
effect of regression can be considerable in comparison to the so-
lution with stationary walls. Because most current mathematical
and numerical models ignore regression effects, this study demon-
strates that there are certainranges over which one must not discount
regression without incurring significant errors. The amount of error
depends, of course, on the relative orders of o and Reynolds num-
ber Re. As indicated earlier, in a recent simulation of a slab rocket
motor in two-space dimensions, Venugopal et al.’® have employed
an injection Reynolds number of 47.6 throughout their investiga-
tion. Nonetheless,no regression was incorporatedin their numerical
model. The results of this study suggest that for a typical regression
rate of 100, the influence of wall regression can be so important at
such a value of Reynolds number Re (*48) that its incorporation
appears to be a necessity.

C. Radial Velocity

The radial velocity is shown in Fig. 5 for three different values
of the relative regression rate «/Re. At the outset, two interesting
phenomenaare observed. The first correspondsto the existence of a
pointalong the interval 0 < 5 < 1, where the radial velocity exceeds
its (absolute) value at the wall. At first glance, this behavior appears
paradoxicalbecauseu, is expected to diminish monotonically while

-1.519
-1.0

-0.51

0:0 T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5

Fig. 5 Influence of the regression rate on the radial velocity for —,
Re =100; - - -, Re = 500; and ---, Re = 1000.

approaching the centerline. At least, this was the trend observed
in the slab rocket motor analog.® The difference here lies in the
existence of a finite curvature to which one can attribute the near-
wall overshoot. The reason is this: Because the cylindrical flow
area A, (r) =2mrL normal to incoming streams is proportional to
the radius, the sudden reduction in A, in the vicinity of the wall
(where the axial velocity is insignificant) forces the radial velocity
to increase (in absolute value) to keep satisfying mass conservation.
The second interesting phenomenon is observed when the relative
expansion ratio increases. In this event, because expansion delays
flow turning, the point of maximum radial velocity moves away
from the wall. This is clearly shown in Fig. 5 for Re = 100. Past that
point of maximum radial velocity, the axial componentis no longer
insignificant. The downstream mass transport becomes sufficiently
appreciable to offset the effect of a radial compressionin A,,. For
the three cases shown at «/Re =1, 0.2, and 0.1, the radial velocity
overshootrelative to the wall is found to be 1.236,1.087, and 1.076
atr =0.707, 0.828, and 0.845; they indicate that the distance from
the wall to the point of maximum u, is commensurate with the size
of o/Re. We conclude that the closest distance to the wall together
with the smallest overshoot occur when either 1) the walls are not
moving or 2) the Reynolds number is very high. From the inviscid
formulation, one finds that the smallest possible overshootis 1.07
at a radius of 0.861.

D. Radial and Axial Pressure Distribution

The pressure difference given by Eq. (51) is plotted in Fig. 6
for fixed o and a range of Reynolds number Re (Fig. 6a) and fixed
Reynolds number Re and a range of « (Fig. 6b). The drop is al-
ways positive, indicating, a higher pressure along the centerline.
Consistent with the radial velocity distribution, the pressure drop
exhibits a maximum on the interval 0 < n < % As shownin Fig. 6a,
for /Re=1, 0.2, and 0.1, extrema of 1.66, 0.77, and 0.67 appear
atr =0.783, 0.854, and 0.859. These locationsare 11, 3, and 1.7%
closerto the wall than the loci of maximumradial velocities. Both the
wall distance and magnitude of the overshootseem to decrease with
successive decreases in «/Re. These trends are further confirmed
in Fig. 6b where, due to comparable sizes of « and Re, significant
overshoot values in the pressure drop are realized at increasing dis-
tances from the wall. Consistent with Eq. (52), the axial pressure
diminishes in a parabolic fashion along the axis of the tube. Its de-
pendence on «/Re follows the same physical arguments presented
earlier.

2.0

154 e=100

Ap,
1.0+

0.5 s

0.0 T T " T " T - :

Fig.6a Influence of the injection Reynolds number on the radial pres-
sure distribution for ,Re =100; - - -, Re =500; and - --, Re = 1000.

324

244

161

Fig.6b Radial pressure distribution at a moderate injection Reynolds
number and a range of regression rates: —, 0; - - -, 20; --- -, 40; --—,
60; ----,80;and - - - -, 100.
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2.0 T T T T 1

Fig. 7a Influence of the injection Reynolds number on the wall shear
stress for a moderate regression rate and ——, Re = 100; - - -, Re = 500;
and ---, Re = 1000.
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Fig. 7b Wall shear stress at a moderate injection Reynolds number
and a range of regression rates: —, 0; - - -, 20; - - - -, 40; --—, 60; ----,
80; and - - - -, 100.

E. Wall Shear Stress

Figure 7 shows the influence of Reynolds number Re and « on
the shear stress (or vorticity) along the regressing surface. For fixed
o and a range of Reynolds number Re, Fig. 7a confirms that the
shear stress at the wall decreases with successive increases in the
Reynolds number. This is also true of mean-flow vorticity. Thus, as
the role of viscosity is diminished, the friction force is weakened as
well.

When the Reynolds number is fixed at Re = 10 (Fig. 7b), vary-
ing the regressionrate of comparable size leads to more appreciable
stressesathigherexpansionrates. The expansionprocess may, there-
fore, be viewed as a mechanism that promotes higher friction at the
wall. This stress increases downstream due to the relative growth
in the parallel-to-normal velocity ratio. The increased friction also
signalslarger vorticity productionin the downstream portions of the
tube.

V. Conclusions

A higher-order mean-flow approximationis presented for an ide-
alizedrocketmotor. Besidesits ability to accountfor wall regression,
the final solution is consistently viscous and rotational. As such, it
is suitable for use in the fundamental aeroacoustic solution that has
received much scrutiny in the past. It can also be used to investi-
gate, by way of linear stability theory, the hydrodynamic evolution
of the core-flow shear layers. In past studies, the onset of instability
has invariably evolved from the introduction of periodic fluctua-
tions bearing the form F expl[i (kz — wt)]; therein, F = sin(%nrz)
and (k, @) have been used to symbolize the complex wave number
and frequency of oscillations, respectively Instead of analyzing
the transition to turbulence based on an inviscid function, it is now
possible to incorporate the viscous correction given by Eq. (45) into
the expression for F. It may be safely argued that a more accurate
assessment of the hydrodynamic transition maps can be developed
therefrom. A more precise characterizationof the acousticboundary
layer can also be expected including mean-flow adjustments in the
critical parameters leading to turbulence?**° Overall, the demon-
strated applicability of the current approximationto a broaderrange
of physical parameters extends its usage to problems for which
the inviscid solution deteriorates. These include high-acceleration
interceptor vehicles that utilize fast regressing propellants. They
alsoencompasscold-flow experimentsthatinvolve medium-to-large
injection. In the future, it is hoped that the mathematical details

provided here can be used to overcome the nonlinear behavior aris-
ing in similar equations of higher order.
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