
AIAA JOURNAL

Vol. 40, No. 9, September 2002
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The bulk gas motion in a circular-port rocket motor is described using a rotational, incompressible, and viscous
� ow model that incorporates theeffect ofwall regression. Themathematicalidealizationdevelopedis also applicable
to semi-open porous tubes with expanding walls. Based on mass conservation, a linear variation in the mean axial
velocity is ascertained. This relationship suggests investigatinga spatial transformation of the Proudman–Johnson
form.With the use of similararguments, a temporal transformationis also introduced. When these transformations
are applied in both space and time, the Navier–Stokes equations are reduced to a single, nonlinear, fourth-order
differential equation. Following this exact Navier–Stokes reduction, the resulting problem is solved using variation
of parameters and small-parameter perturbations. The asymptotic solutions for the velocity, pressure, vorticity,
and shear are obtained as function of the injection Reynolds number Re and the dimensionless regression ratio
®. By way of veri� cation, it is shown that, as ®/Re !! 0, Yuan and Finkelstein’s solutions can be restored from
ours. Similarly, as ®/Re !! 0, Culick’s inviscid pro� le is recovered. It is demonstrated that, for a range of small
®/Re, inviscid solutions are practical. However, for fast burning propellants under development, the inviscid
assumption deteriorates. Because it is applicable over a broader range of operating parameters, the current
analysis leads to a closed-form mean-� ow solution that can be used, instead of the inviscid pro� le, to 1) prescribe an
adjusted aeroacoustic � eld, 2) describe the so-called acoustic boundary layer, 3) evaluate the viscous and rotational
contributions to the acoustic stability growth rate factor, 4) track the evolution of hydrodynamic instability, and
5) accurately simulate the internal gasdynamics in rapidly regressing motors and cold-� ow experiments with
medium-to-high levels of injection.

Nomenclature
A = permeance; in live propellants, ½s=½ ¡ 1
Ab.Nz/ = porous boundary or burning surface area, 2¼a Nz
Ac = cross-sectionalarea, ¼a2

a = instantaneouswall radius, m
Pa = wall regression rate, m/s
F = similarity function, NF=Re
Np = dimensional pressure, Pa
Re = injection Reynolds number
r = normalized radial coordinate, Nr=a
Nr = radius, m
t = time, s
Nu = velocity ( Nur , Nuz), m/s
z = normalized axial coordinate, Nz=a
Nz = axial coordinate,m
® = dimensionless regression ratio
1 = difference
" = reciprocal of the injection Reynolds number
´ = transformed radial coordinate, 1

2
r 2

µ = recurring coordinate, 1
2
¼r 2
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# = control volume
º = kinematic viscosity, m2/s
½ = density, kg/m3

¿ = normalized shear stress
Ã = normalized stream function
Ä = normalized vorticity

Subscripts

b = porous boundary or burning surface
c = cross section
m = spatial mean value at a given cross section
r; z = radial or axial component; term used for derivatives
s = solid phase
t = temporal derivative

I. Introduction

N UMEROUS studies have addressed the motionof an injection-
driven � uid inside a tube with transpiring walls. Past and

recent interests have covered a broad spectrum of technical ap-
plications. These include paper making,1 sweat cooling,2;3 � ow
� ltration,4¡6 boundary-layer control,7¡9 and internal � ow model-
ing in solid rocket motors. Ongoing interest is evidenced by the
rigorous mathematical analyses carried out recently by Banks and
Zaturska,10 Zaturskaand Banks,11 Cox and King,12 King and Cox,13

and Lu.14;15 Internal � ow modeling has receivedconsiderableatten-
tion due to the central role that it occupies in the assessment of
aeroacoustic instabilities in rockets.16¡18 In part, this is due to the
strongdependenceof stability integralson the precisedetermination
of velocity and pressure � elds. The daunting task of describing the
gasdynamics inside rocket motors has, hence, motivated, over the
last four decades, the quest for several mathematical idealizations
of increasing level of re� nement.

To better understand the evolution of the problem at hand, note
that the internal � ow has been traditionally viewed as consisting
of a superposition of mean and unsteady � elds. Also note that the
unsteady � eld is largely prescribed by the mean-� ow motion. In
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view of this intimate coupling, one is justi� ed in seeking both � ow
components under the same � ow conditions and using comparable
orders of accuracy.

The � rst adequate mean-� ow approximation was presented by
Culick19 in 1966. This constituted a visible improvement over the
one-dimensionalsolution used in previous studies.20 Despite its ne-
glect of small viscous effects, Culick’s steady and incompressible
pro� le19 was rotational; it could satisfy the fundamental bound-
ary conditions associated with an idealized rocket motor. Unlike
its predecessor,20 it could now ful� ll the no-slip restriction at the
wall by ensuring that gases enter the chamber perpendicularly to
the burning surface. Because it is inviscid, Culick’s pro� le19 was
exact in the limit of an in� nitely large injection Reynolds num-
ber Re. Overall, it was convenient, simple, and reasonably accu-
rate over a practical range of Reynolds numbers exceeding 1000.
It also lent itself to both numerical21 and experimental veri� cations
by Dunlap et al.22 and Yamada et al.23 Aside from a small region
near the head end of the chamber, Culick’s pro� le19 appeared to
approximate closely the values measured in a porous tube with real
gas. This gave Varapaev and Yagodkin24 the impetus to use it as
the basis for their investigation of hydrodynamic instability. In the
same context, it has been recently employed by Casalis et al.25 and
Griffond et al.26 to investigate the evolution of turbulence in both
planar25 and axisymmetriccon� gurations.26 Whereas Varapaev and
Yagodkin24 have undertaken a preliminary study of the linear sta-
bility of Culick’s pro� le,19 Casalis et al.25 and Griffond et al.26 have
employed a modern approach from which results could be used
to predict experimentally measured turbulence. These efforts have
suggested the presence of a hydrodynamicsource of instability that
has not yet been accounted for in combustion stability theory. A
similar conclusion has been reached by Flandro and Majdalani,18

who have attributed the discrepancy to one-dimensionallimitations
undermining the standard formulation in use today.27;28 When a
one-dimensionalrepresentationis adopted to describe the unsteady
� eld, two- and three-dimensionalinteractionsare inadvertentlypre-
cluded. Several sources of instability are consequently suppressed,
including turbulentenergy.This inherent restrictionexplains the in-
ability of the traditional formulation to physically account for � ow
turningandothervorticity-drivenphenomena.Severalcorroborative
studies are now available, for example, in which the onset of turbu-
lence in porous-walledchannelsor tubes is con� rmed to be a source
of instability. To name a few, one may cite Lee and Beddini,29;30

Beddini and Roberts,31 Sabnis et al.,32 Tissier et al.,33 Roh et al.,34

and Apte and Yang.35 Others in which vortex-driven phenomena
have emerged include studies of the parietal vortex shedding that
has been identi� ed to be a sourceof instabilitythat eludes traditional
theory.36¡40 Naturally, the production and propagation of so-called
crawling vortices is strongly in� uenced by the mean-� ow motion.37

In addition to its pertinence to studies of hydrodynamic instability,
the mean-� ow pro� le has also been in� uential in the development
of unsteady � ow dynamics used to describe the aeroacousticwave
motion inside rocket motors.41¡45

In Flandro’s41 continued attempts to point out the shortcomings
of using one-dimensional plane wave solutions,46 he pursued mul-
tidimensional formulations for the unsteady core � ow.41 Initially,
Flandro presented a simple analytical solution for the oscillatory
� eld that accountedfor the presenceof solid boundaries.42 His early
model was two dimensional only arti� cially because it ignored the
downstreamconvectionof unsteady vorticity together with the spa-
tial depreciationof Culick’s radial velocity.19 It was, however, valid
in a small region above the burning surface, where most signi� -
cant interactionsevolved.An asymptotic solutionby Majdalani and
Van Moorhem followed.43;44 The latter employed the exact Culick
pro� le19 but ignored the axial dependency.

Flandro16 later presented an inviscid solution that faithfully re-
tained Culick’s pro� le19 and the correct spatial dependency.Shortly
thereafter, Flandro produced a multidimensional solution that re-
tained viscous effects.17 A practically equivalent solution based on
multiple scales was independentlyarrived at by Majdalani and Van
Moorhem.43 Majdalani and Van Moorhem45 would later demon-
strate the agreement between both contemporaneous solutions and
full numerical simulations. Their results were also found to agree

with test measurements acquired by Barron et al.,47 Brown et al.,48

and Dunlap et al.49 The multiple-scalesolution was also capable of
elucidating the acoustic boundary layer, which until then had been
the subject of much controversy.50

The Cartesian slab-rocket geometry has also been analyzed by
Majdalani and Roh51 and, for an arbitrary mean-� ow pro� le, by
Majdalani52 and Majdalani and Van Moorhem.53 Pursuant to these
studies, a fully rotational and viscous representation of the aeroa-
coustic � eld has been established. Besides being of higher order,
the newly developed expressions by Majdalani,52 Majdalani and
Van Moorhem,53 and Majdalani and Flandro54 have offered the ad-
vantage of accommodating any conceivablemean-� ow pro� le. Be-
causethe level of precisionachievedin these recentstudies is limited
by the accuracyof the mean-� ow solution, the need arises today for
an improved mean-� ow approximation that is consistent with the
unsteady � ow details.

In addition to that, a more comprehensive mean-� ow solution
can 1) improve the accuracy of time-dependentmodels, 2) provide
a better platform to investigate hydrodynamic stability, and 3) en-
hance our � ow predictive capabilities; it also serves to extend the
range over which current models apply. In fact, accordingto Yuan55

(cf., p. 267), there are numerous problems of real interest that ex-
hibit injection Reynolds numbers in the 10–1000 range. One such
example corresponds to a recent core-� ow simulation carried out
at the Center for Simulation of Advanced Rockets (CSAR), where
an injectionReynolds number of 47.6 was held constant throughout
the numerical study.56

For the foregoing reasons, it is the purpose of this paper to obtain
a mean-� ow solution that not only satis� es the basic boundary con-
ditions, but is also capable of incorporatingviscous forces and wall
regression.A direct consequenceof such an effortwill be the attain-
ment of an internal � ow approximationthat is consistentlyrotational
and viscous in both its mean and oscillatory components. Further-
more, it is anticipated that the higher-order approximation will be
useful over a broader range of operating parameters, including the
10–1000 range. In actuality, the need for a higher approximation
has been alluded to in recent studies by Lee and Beddini29;30 and
Apte and Yang.57 In the former study,29;30 retentionof the Reynolds
number was found to be important due to the impact of viscousdis-
sipationon the acousticboundary layer at constantfrequency.In the
latter study,57 a numerical simulation of a nozzleless rocket motor
was carried out in which Taylor’s inviscid representationwas found
to be inadequatefor Re < 500 (Ref. 57, pp. 807, 808). The search for
a higher approximation is further motivated by the need to model
motors with fast burning propellants, namely, those being devel-
oped for high-acceleration interceptor vehicles. In that context, it
may be argued that the availabilityof a closed-formsolution can be
instrumental in validating numerical simulations of the regression
process (private communication, R. A. Fiedler, CSAR, University
of Illinois at Urbana–Champaign, 2001). Aside from the foregoing
reasons, note that this work serves to extend the planar solution
presented recently by Zhou and Majdalani.58

In principle, the paper can be divided into two parts. In the � rst,
Goto and Uchida’s approach59 is applied to reduce the Navier–
Stokes system into a single Proudman–Johnson equation.60 The
procedure involves a spatial transformation that presumes a lin-
early varying axial velocity and a temporal transformation that is
granted by a time-invariantdimensionless regression.In the second
part, we follow Yuan and Finkelstein61 and Terrill and Thomas21

in perturbing the resulting nonlinear equation. In the process, we
� nd it necessary to apply the method of variation of parameters in
a quadruple fashion. At length, a higher-order mean-� ow approx-
imation is obtained for the velocity, pressure, vorticity, and shear
stress distributions. These � ow attributes are described in addition
to limiting process veri� cations that are occasionally resorted to.
Our results clearly indicate the existence of a range over which
the inviscid approximation deteriorates. Conversely, the suitability
of Culick’s pro� le19;46 is demonstrated over a substantial range of
conditions characterizing solid rocket motors. A numerical com-
parison that is identical to that described by Zhou and Majdalani58

is also carried out; it will be omitted here in the interest of
brevity.
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II. Mathematical Model
The internal-burningcylindrical grain of a solid rocket motor is

idealized as a long tube with one end closed. The tube’s circumfer-
ential walls are assumed to be suf� ciently permeable to allow the
radial in� ow of a secondary � uid. The incoming stream turns and
merges into the primary axial � ow. The forthcominganalysis is gen-
eral enough to accommodate both liquid and gaseous injectants.As
the circumferentialwalls expand at a speed equal to Pa, the head end
is assumed to be suf� ciently compliant to stretch in the radial di-
rection while remaining perpendicular to the tube’s axis. As shown
in Fig. 1a, a coordinate system can be chosen based on axisym-
metry. With this choice, the incompressible mass and momentum
conservationequations may be written as
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where variables have their usual signi� cance or as given in the
Nomenclature. Boundary conditions are

Nr D a.t/; Nuz D 0; Nur D ¡V

Nr D 0;
@ Nuz

@r
D 0; Nur D 0

Nz D 0; Nuz D 0 (4)

and V is the absolute velocity at the wall. These conditions allow
for a time-dependentradius at Nr D a.t/, where the porous wall is lo-
cated.Along this surface,the no-slipmechanismdictatesa zeroaxial
velocity, Nuz D 0, and a radial in� ux according to Nur D ¡V . Along
the centerline, Nr D 0, symmetry is re� ected in both @ Nuz=@r D 0 and
Nur D 0. The � nal boundary condition applies to the head end, Nz D 0,
where the in� nite impedance requires setting Nuz D 0.

A. Basic Assumptions
Equations (1–4) are written under the following implicit assump-

tions:
1) The bulk � ow is incompressible and isothermal.
2) Body forces are absent.

a)

b)

Fig. 1 Schematic of a cylindrical motor showing a) coordinate system
used to capture wall regression and b) control volume used in the mass
balance calculation.

3) The kinematic viscosity º is constant.
4) The � uid enters the tube at a spatially uniform velocity V .t/.
5) Swirling effects are ignored.
6) The azimuthal component of velocity is zero.
7) Laminar conditions are prevalent.
8) No heat is transferred to the gas.

B. General Mass Balance Requirement
Consider in Fig. 1b a control volume # extending from the head

end to an arbitrary position Nz. The average axial � ow velocity
Num.Nz; t/ at a given cross section Ac D ¼a2 can be determined from

Num .Nz; t/ D 1
Ac

Z

Ac

Nu.Nz; Nr; t/ ¢ dA (5)

where Nu is the local axial velocity and dA D k dA is the differential
surface-area vector. When Ab.Nz/ D 2¼a Nz is used to denote the vol-
ume’s circumferential area, conservationof mass across # requires
that

@

@t

Z

#

½ d# C
Z

Ac

½ Nu ¢ dA ¡ ½ AbVb D 0 (6)

where d# D ¼a2 Nz and Vb is the � uid velocity with respect to the
wall. Recalling that the � ow is incompressible, one may substitute
Eq. (5) into Eq. (6) and integrate from 0 to Nz. One obtains

Num D
Ab

Ac

Vb ¡
Nz

Ac

@ Ac

@t
D 2

Nz
a

.Vb ¡ Pa/ D 2
Nz
a

V (7)

where V D Vb ¡ Pa is the absolute in� ow velocity with respect to
an inertial reference frame. Equation (7) indicates that the mean
velocity is linearly proportional to the axial coordinate. Because
integration in Eq. (5) does not affect Nz, this axial dependence in Num

can only be realized when Nuz.Nz; Nr ; t/ D Nz f .Nr; t/. This linear form is
a familiar product of a classic similarity transformation.

C. Mass Balance at the Propellant Surface
In problems for which � uid injection and wall motion are con-

trolled by separate processes,Vb and Pa are independentparameters.
In solid propellant rocket motors, however, the relative velocity of
the gas with respect to the regressing walls is intimately related to
the wall regression speed. To see this, one must recognize that, in
any giventime interval,themass of propellantburnedmust equal the
mass of gases ejected into the chamber. Because Ab is the burning
surface in a solid propellant motor (or the sublimating surface in a
cold-� ow simulation of the burning process47;62;63/ conservationof
mass at the solid–gas interface requires that ½ AbVb D ½s Ab Pa. The
gas velocity with respect to the wall becomes

Vb D .½s =½/ Pa (8)

where ½s is the density of the solid phase (before solid propellant
pyrolysis or cold-wall sublimation). From Eq. (8), the absolute ve-
locity can be seen to be

V D .½s =½ ¡ 1/ Pa D A Pa (9)

where A D ½s=½ ¡ 1 is the wall permeanceor injectioncoef� cient.59

Because A ´ V=Pa, it is a measure of wall permeability. In rocket
motors, ½s » 2000 kgm¡3, ½ » 20 kg ¢ m¡3, so that A » 100.

D. Similarity in Space
The condition of incompressibility enables us to use the Stokes

stream function NÃ and reduce the Navier–Stokes equations.Starting
with

Nuz D 1
Nr

@ NÃ
@ Nr

; Nur D ¡1
Nr

@ NÃ
@ Nz

(10)

onemay followGoto and Uchida59 andwrite the streamfunctionin a
formthatisconsistentwith mass conservation,namely,a Proudman–

Johnson form60 that can lead to a linear Nz variation in the axial
velocity. Thus, let we

NÃ D º Nz NF .r; t/; r D Nr=a.t/ (11)



MAJDALANI, VYAS, AND FLANDRO 1783

In terms of NF , the axial and radial velocities become
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Because the radial velocity is independent of Nz, vorticity simpli-
� es into NÄ D jr £ Nuj D ¡ @ Nuz=@ Nr . The vorticity transport equation
becomes NÄt C Nu ¢ r NÄ D ºr2 NÄ, namely,
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To apply Eqs. (11–13), partial derivatives must be carefully evalu-
ated. These involve
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E. Reduced Navier–Stokes Equation
Substituting Eqs. (15) and (16) into Eq. (14) yields

©
.¡º Nz=a3/. NFr t=r/ C . Paº Nzr=a4/. NFr =r /r C .2º Pa=a4/.Nz=r/ NFr

¡ .º2 Nz=a5/. NFr =r /2 C .º2 Nz=a5/. NF=r/. NFr =r /r

C .1=r/. NFr =r/r C . NFr =r/rr

ª
r

D 0 (17)

At this point, it is expedient to introduce the dimensionless regres-
sion ratio

®.t/ ´ Paa=º (18)

where ® is a Reynolds number based on the regression speed of the
walls. Inserting Eq. (18) into Eq. (17) renders, after some algebra,
the Proudman–Johnson-typeequation60

©
. NFr =r/rr C [.1 C NF/=r C ®r]. NFr =r/r

¡ . NFr =r ¡ 2®/ NF=r ¡ .a2=º/. NFr t=r /
ª

r
D 0 (19)

Boundary conditionsmay be obtained from Eq. (4). These translate
into

NFr =r D 0; NF=r D Re at r D 1 (20)

. NFr =r /r D 0; NF=r D 0 at r D 0 (21)

where Re ´ V a=º is the dynamic Reynolds number based on
the absolute injection velocity. Equation (19) embraces Yuan and
Finkelstein’s61 and is consistent with that solved numerically by
Goto and Uchida.59 Note that Re and ® are generally unrelated.
However, for cases involving propellant combustion or solid-phase
sublimation, Eq. (9) can be multiplied by a=º to obtain Re D A®.
Under these auspices, Re and ® become intimately related by the
solid-to-gasdensity ratio. For illustrativepurposes,a range of phys-
ical parameters corresponding to solid propellants is taken from
Sutton64 and compiled in Table 1 (cf., Ref. 64, pp. 370, 375, 418,
and 435). We note that data regarding viscosity are based on the
model by Lucas, which remains applicableat high temperaturesand
pressures (see Ref. 65). We also note that the maximum regression
speed is taken from a recent work by Beckstead.66

Table 1 Range of parameters for solid rocket motors

Parameter Symbol Range

Grain radius, m a 0.005–3.5
Grain density, kgm¡3 ½s 1,500–2,500
Gas density, kgm¡3 ½ 10–20
Kinematic viscosity, m2s¡1 º 10¡6–10¡5

Grain burn rate, ms¡1 Pa 0.0005–0.1
Gas injection velocity, ms¡1 Vb 0.0075–10
Regression ratio ® 0.125–35,000
Injection Reynolds number Re 35–3.3 £ 106

F. Similarity in Time
To make further headway toward a more manageable equation,

we assume a self-similarity in time that can be reasonably justi-
� ed in practice. Using the same argument presented by Uchida and
Aoki,67 we � rst apply the transformation NF.r; t/ ! NF[r; ®.t/] and
then de� ne ® to be invariant in time. To realize this condition, ®
must be speci� ed by its initial value, namely,

® D Paa=º D Pa0a0=º (22)

where a0 and Pa0 represent the initial radius and regression rate. The
ensuingtransformationcan be arrivedat by integratingEq. (22) with
respect to time. One obtains

a.t/ D a0

q
1 C 2º®ta¡2

0 (23)

From a physical standpoint, our idealization is based on a decel-
erating regression rate that follows a plausible model according to
which a Pa D const. Thus, as the internal radius increases, the rate of
regression decreases. Far from being general, this limiting feature
is used to permit a closed-form solution. In actual rocket motors,
one must recognize that propellantburningexhibitsa more complex
regression behavior.

G. Idealized Thrust Behavior
Pursuant to the mass conservation details in Sec. II.B, one may

apply the integral form of momentum conservation to estimate the
axial thrust force due to gas ejection. Using ¯ to represent the O(1)
momentum correction coef� cient, one gets

F D
Z

Ac

½ Nu2.Nz; Nr ; t/ dA D ¯½ Ac Nu2
m

¯ ´ A¡1
c Nu¡2

m

Z

Ac

Nu2.Nz; Nr; t/ dA (24)

Then, from Eq. (7), one can substitute the value for the mean axial
velocity Num and cross-sectionalarea Ac to obtain

F D ¯½¼a2[2L.Vb ¡ Pa/=a]2 D 4¼¯½L2.Vb ¡ Pa/2 (25)

Imposition of a Pa D ®º D const gives

F D 4¼¯½L2[Vb ¡ ®º=a.t/]2 (26)

Thus, in cold-� ow experiments having � xed blowing speed with
respect to the wall (Vb D const), the thrust force will increase ac-
cording to Eq. (26) as the internal radius of the chamber increases
in time.

In a solid propellant rocket motor, however, the injection speed
with respect to the moving wall is related to both the propellant
density along the burning interface and the speed of regression via
Eq. (8). At the outset, Eq. (25) becomes

F D 4¼¯½L2.½s=½ ¡ 1/2 Pa2 D 4¼¯½L2.®º/2 A2=a2 » A2=a2 (27)
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Because A D ½s =½ ¡ 1 is constant for a homogeneous propellant
(where the solid propellant density ½s remains uniform), Eq. (27)
suggests a regressive thrust with increasing a.t/. Nonetheless, a
neutral thrust is also conceivable by designing a propellant whose
density ratio increasesproportionatelywith the inner radius accord-
ing to A » a.t/. Similarly, a progressivethrust can be accomplished
by designing a propellant with a density ratio that increases at a
faster rate than the radius, that is, for A=a increasing in time.

H. Self-Similarity Solution in Time and Space
Under the provision of a time invariant ®, we � nd it useful to

de� ne

F ´ NF=Re; ´ ´ 1
2
r 2; " ´ 1=Re (28)

Backward substitution into Eq. (19) yields
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p
2´

d2 F
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Next, we solve this set using asymptotic tools.

III. Analytical Solution
Following Terrill and Thomas21 and Terrill,68 we start by ex-

panding F D F0 C "F1 C O."2/ and substitute back into Eq. (29).
At leading order, a basic solution is obtained, namely,

F0
d3 F0

d´3
¡ dF0

d´

d2 F0

d´2
D 0 (31)

The solution to this equation can be guessed to be F0 D sin.¼´/.
When µ ´ ¼´ is de� ned, the � rst-order equation of O."/ may now
be written as

sin µ
d3 F1

dµ 3
¡ cosµ

d2 F1

dµ 2
C sinµ

dF1

dµ
¡ cos µ F1

D
³

2

¼
®µ C 3

´
cosµ C 4

¼
® sin µ ¡ 2µ sin µ (32)

A. Variation of Parameters
To make headway, one must guess that a partial solution must be

F1h D cos µ . The variation of parameters approach can then be used
to � nd the correction multiplier based on F1h D C .µ/ cos µ . Thus,
backward substitution into the homogeneouspart of Eq. (32) yields

C 000 sin µ cosµ ¡ 2C 00 sin2 µ ¡ C 00 D 0 (33)

so that

C.µ/ D K0 tan µ C K1µ C K2 (34)

The complete homogeneous solution becomes

F1h D K0 sin µ C K1µ cosµ C K2 cosµ (35)

where K0, K1, and K2 are yet to be determined. The method of
variation of parameters is applied once more by turning the three
integration constants into undetermined functions.Thus, we set

F1.µ/ D K0.µ/ sin µ C K1.µ/µ cosµ C K2.µ/ cosµ (36)

Substituting Eq. (36) into Eq. (32) leads to

K 0
0 sin µ C K 0

1µ cosµ C K 0
2 cosµ D 0 (37)

K 0
0 cosµ C K 0

1.cos µ ¡ µ sin µ/ ¡ K 0
2 sin µ D 0 (38)

K 0
0 sin2 µ C K 0

1.2 sin2 µ C µ cos µ sin µ/ C K 0
2 cos µ sinµ

D ¡[.2®=¼/µ C 3] cos µ C .4®=¼/ sin µ ¡ 2µ sin µ (39)

Solving Eqs. (37–39) simultaneously enables us to determine the
variable coef� cients. These are found to be

K0 D .®=¼/
£
¡µ cscµ C 3 tan 1

2
µ C .cosµ ¡ µ sinµ /

¤

¡ 3
2 csc µ ¡ 1

2 sin µ ¡ µ cos µ ¡ S.µ/ C C0 (40)

K1 D .®=¼/
¡
µ csc µ ¡ 3 tan 1

2 µ
¢

C 3
2 csc µ C S.µ/ C C1 (41)

K2 D .®=¼/[3S.µ/ ¡ µ cos µ ¡ sin µ ¡ µ 2 csc µ ]

¡ 1
2 cos µ C µ sin µ ¡ 3

2 µ csc µ ¡ S1.µ/ C C2 (42)

where

S.µ/ D
Z

µ

0

Á csc Á dÁ; S1.µ/ D
Z

µ

0

Á2 csc Á dÁ (43)

In series form, these integrals become

S.x/ D x C
1X

k D 1

2

¼ 2k

³
1X

n D 1

1
n2k

´
.1 ¡ 21 ¡ 2k/

.2k C 1/
x2k C 1

S1.x/ D 1

2
x2 C

1X

k D 1

³
1X

n D 1

n¡2k

´
.1 ¡ 21 ¡2k/

.k C 1/¼ 2k
x2k C 2 (44)

B. First-Order Solution
To recapitulate,we recall that µ D ¼´ and combine the basic and

� rst-order solutions for F . We obtain

F D sin µ C "
©
.®=¼/

£
3 tan 1

2 µ .sin µ ¡ µ cos µ/ ¡ 2µ
¤

¡ 2

C .µ cos µ ¡ sin µ /S.µ/ C [3.®=¼/S.µ/ ¡ S1.µ/] cos µ

C C0µ cos µ C C1 sin µ C C2 cos µ
ª

(45)

The remaining constantscan be determined from the boundarycon-
ditions given by Eq. (30). One � nds

C0 D ¡.4=¼/ C .2®=¼ 2 ¡ 1/

¡ S
¡

1
2
¼

¢
.6®=¼ 2 C 1/ C .2=¼/S1

¡
1
2
¼

¢
(46)

C1 D
£
® C 2 C S

¡
1
2 ¼

¢¤
; C2 D 2 (47)

At this juncture, the axial and radial components of velocity
and pressure can be evaluated. One � nds Culick’s19 or Yuan and
Finkelstein’s61 components to be recoverable from Eqs. (45–47).
Because it is asymptotic in nature, Eq. (45) can faithfully reproduce
viscous and regression effects so long as " and "® are small, re-
spectively.Practically, the range of applicability encompasses both
cold-� ow and rocket motor applications wherein both " and "® are
smaller than 0.1.

To avoid singularities at the core, however, we resort to ´ as our
independentcoordinatefor calculationsand plots. To maintain gen-
erality, we present variables in the following dimensionless form:

z D Nz=a; Ã D NÃ=a2V D zF

Ä D NÄa=V D ¡z.Fr =r /r D ¡z
p

2´F´´; p D Np=½V 2 (48)

ur D Nur =V D ¡F=r D ¡F
¯p

2´

uz D Nuz=V D .z=r/Fr D zF´; um D Num =V D 2z (49)

Pursuant to these choices, the axial velocitynormalizedby the mean
axial velocitybecomesuz=um D 1

2
F´. In like fashion,thenormalized

radial pressure loss measured from the core can be determined.
Starting with

p´ D ¡
£
"F´ C ®"F C .F=´/2

¤
´

(50)

one may integrate from the core to any radial position.The resulting
drop is found to be

1pr ´ ¡[p.´; z/ ¡ p.0; z/] D "F´ C ®"F C ´¡1
¡

1
2

F
¢2 ¡ "F´.0/

(51)
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Similarly, the axial pressure drop measured from the head end
can be written as

1pz ´ p.´; z/ ¡ p.´; 0/ D 1
2
z2

©
"
£¡

® C 1
2
´¡1

¢
F´ C 2´F´´´

C .2®´ ¡ 1/F´´

¤
¡ .F´/2 C F F´.1 ¡ ´¡1/

ª
(52)

Finally, the shear stress may be determined from Newton’s law
for viscosity. One � nds

¿ D N¿=½V 2 D ¡¹ NÄ=½V 2 D "z
p

2´F´´ D ¡"Ä (53)

where the linear relation with mean-� ow vorticity is apparent. At
the wall, Eq. (53) gives ¿b D "zF´´. 1

2 / D ¡"Ä.1/.

IV. Illustrations
To examine the effects of viscosity and wall regression, the main

� ow attributesare now describedover differentrangesof the control
variables. This description is hoped to aid in interpreting the sig-
ni� cance and limitations of the higher-orderapproximation.This is
accomplishedby observing the behavior of � ow streamlines,veloc-
ities, pressure distributions, and shearing stresses at the wall.

A. Streamlines
In Fig. 2, streamlinepatternsare shownfor two disparatevaluesof

the Reynolds number, both with and without wall regression. From
Fig. 2a, it may be inferred that, in the absence of wall motion, only
slight differences in streamline curvatures arise near the head end
despite the two orders of magnitude separating the Reynolds num-
bers.Differences in streamlinecurvatures and, hence, the � ow turn-
ing speed, become more appreciable in the downstream portions.
One expects these differences to be more pronounced in elongated
rocket motors. The effects of viscosity are clearly more signi� cant
in the downstreamsectionsof the tube. Thus, as the Reynolds num-
ber is decreased from 1000 to 10, the viscous decay of the radial
velocity component takes place more rapidly. As a result, the � ow
turning speed is increased, leading to a sharperstreamlinecurvature
near the walls.

Figure 2b, on the other hand, indicates that lowering the Reynolds
number causes the � ow to become more sensitiveto changes in wall
regression. This explains the incapacityof (large Reynolds number
Re) inviscid � ows in capturing the wall motion. As can be inferred
by inspectionof Eq. (29), the determiningfactor appears to be ®=Re
or 1=A. The smaller this factor is, the less sensitive the � ow will
be and the more closely will it resemble the inviscid analog. Far
downstream, however, the otherwise negligible discrepancies be-
tween viscous and inviscid � ows with either stationary or expand-
ing walls are magni� ed. This is due to the downstreampropagation

a)

b)

Fig. 2 In� uence of the regression rate on the streamlines for – – –,
Re = 10 and ——, Re = 1000.

and buildup in cumulativeerrors caused by suppressingviscousdif-
fusion. As con� rmed by Lee and Beddini,29;30 retention of viscous
effects is clearly necessary, especially when tracking the inception
of turbulence in the presence of periodic disturbances. Figure 2b
also indicates that the effect of fast wall expansion is to reduce the
� ow turning speed, for example, for Re D 10. The higher the regres-
sion speed, the longer will the radial-to-axialvelocity ratio be large
while approaching the core. The curvature of an incoming stream-
line is, thus, increased with Pa. A purely hypotheticalcase arises, for
instance, when the walls regress at nearly the same speed as that of
the � uid entering the tube, that is, Pa D Vb . Under such conditions,
the expansion process offsets the effect of injection to the point of
forcing streamlines to become perpendicular to the walls.

B. Axial Velocity
Figures 3 and 4 show the behavior of axial velocity pro� les (nor-

malized by their mean values um ) over a range of Reynolds num-
ber Re and ®. Similar trends to those associated with streamline
curvatures may be observed. Speci� cally, a greater sensitivity to

a)

b)

Fig. 3 In� uence of the regression rate on the axial velocity for ——,
Re = 100; – – – , Re = 500; and –·– , Re = 1000.

a)

b)

Fig. 4 Sensitivity of the axial velocity to the regression rate (——, 0;
– – – , 20; - - - -, 40; –·–, 60; -··-, 80;and · · · ·, 100): at a)moderate injection
Reynolds number and b) large injection Reynolds number.
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wall regression is observed at smaller values of Reynolds number
Re. Figure 3 indicates that, as ® changes from 10 (Fig. 3a) to 100
(Fig. 3b), the centerline velocity increases from 1.63 to 2.15 times
the average velocity for a Reynolds number of 100. This 32% in-
crease in the centerline-to-mean velocity ratio is quite signi� cant
by comparison to the 7 and 3% increases observed at Re D 500 and
1000, respectively. The reduced sensitivity to wall motion can be
attributed to the diminished role of viscosity at a higher Reynolds
number. Note that, when the walls are made permeable and allowed
to expand, the 2.15 overshootoverum (shown in Fig. 3b) exceedsthe
factorof 2 associatedwith a fully developedPoiseuille � ow in a tube.
The increased centerline-to-meanvelocity ratio in a porous-walled
channel can be ascribed to the injection stream, whose contribution
to the axial velocity is a skewed spatial function that is largest along
the centerline.

For � xed Reynolds number Re, the regression rate is now varied
by equal increments in Fig. 4 over the range 0–100. In Fig. 4a, a
signi� cant variation in the centerline-to-mean velocity ratio is ob-
served ranging from 1.57 to 7.41 as ® is increased from 0 to 100.
This 372% speed augmentation at the centerline can be achieved
or even exceeded when ® is prescribed in a manner to be of the
same order or larger than Re. When this is no longer the case, such
as in Fig. 4b (where Re D 1000/, the mean-� ow overshoot at the
centerline is increased only from 1.57 to 1.63; this marks a mere
4% magni� cation for the same variation in ®. We conclude that the
centerline-to-meanvelocity overshoot is sensitive to the relative ex-
pansion speed and, therefore, commensurate with the size of ®=Re.
For suf� ciently small ®=Re, the centerline-to-mean velocity ratio
asymptotes to 1.57 or 1

2 ¼ . This ratio is due to the mean velocity
being 2z according to Eq. (49) and to the inviscid axial velocity
being uz.r; z/ D ¼z cos. 1

2 ¼r 2/ and hence equal to ¼z at the cen-
terline. It also coincides with the center-to-meanvelocity ratio in a
planar channel. In the latter case, uz.x; y/ D 1

2 ¼x cos. 1
2 ¼y/ or 1

2 ¼ x
along the midsection plane, whereas the mean velocity is simply x
(Ref. 53).

From a practical perspective, Fig. 4 clearly indicates that the
effect of regression can be considerable in comparison to the so-
lution with stationary walls. Because most current mathematical
and numerical models ignore regression effects, this study demon-
strates that there are certain rangesover which one must not discount
regressionwithout incurring signi� cant errors. The amount of error
depends, of course, on the relative orders of ® and Reynolds num-
ber Re. As indicated earlier, in a recent simulation of a slab rocket
motor in two-space dimensions, Venugopal et al.56 have employed
an injection Reynolds number of 47.6 throughout their investiga-
tion. Nonetheless,no regressionwas incorporatedin their numerical
model. The results of this study suggest that for a typical regression
rate of 100, the in� uence of wall regression can be so important at
such a value of Reynolds number Re (¼48) that its incorporation
appears to be a necessity.

C. Radial Velocity
The radial velocity is shown in Fig. 5 for three different values

of the relative regression rate ®=Re. At the outset, two interesting
phenomenaare observed.The � rst correspondsto the existenceof a
point along the interval 0 < ´ < 1

2 , where the radial velocity exceeds
its (absolute) value at the wall. At � rst glance, this behaviorappears
paradoxicalbecauseur is expected to diminishmonotonicallywhile

Fig. 5 In� uence of the regression rate on the radial velocity for ——,
Re = 100; – – –, Re = 500; and –·–, Re = 1000.

approaching the centerline. At least, this was the trend observed
in the slab rocket motor analog.53 The difference here lies in the
existence of a � nite curvature to which one can attribute the near-
wall overshoot. The reason is this: Because the cylindrical � ow
area An.r / D 2¼r L normal to incoming streams is proportional to
the radius, the sudden reduction in An in the vicinity of the wall
(where the axial velocity is insigni� cant) forces the radial velocity
to increase (in absolutevalue) to keep satisfyingmass conservation.
The second interesting phenomenon is observed when the relative
expansion ratio increases. In this event, because expansion delays
� ow turning, the point of maximum radial velocity moves away
from the wall. This is clearly shown in Fig. 5 for Re D 100. Past that
point of maximum radial velocity, the axial component is no longer
insigni� cant. The downstream mass transport becomes suf� ciently
appreciable to offset the effect of a radial compression in An . For
the three cases shown at ®=Re D 1, 0.2, and 0.1, the radial velocity
overshoot relative to the wall is found to be 1.236, 1.087, and 1.076
at r D 0:707, 0.828, and 0.845; they indicate that the distance from
the wall to the point of maximum ur is commensurate with the size
of ®=Re. We conclude that the closest distance to the wall together
with the smallest overshoot occur when either 1) the walls are not
moving or 2) the Reynolds number is very high. From the inviscid
formulation, one � nds that the smallest possible overshoot is 1.07
at a radius of 0.861.

D. Radial and Axial Pressure Distribution
The pressure difference given by Eq. (51) is plotted in Fig. 6

for � xed ® and a range of Reynolds number Re (Fig. 6a) and � xed
Reynolds number Re and a range of ® (Fig. 6b). The drop is al-
ways positive, indicating, a higher pressure along the centerline.
Consistent with the radial velocity distribution, the pressure drop
exhibits a maximum on the interval 0 < ´ < 1

2 . As shown in Fig. 6a,
for ®=Re D 1, 0.2, and 0.1, extrema of 1.66, 0.77, and 0.67 appear
at r D 0:783, 0.854, and 0.859. These locations are 11, 3, and 1.7%
closerto thewall than the lociofmaximumradialvelocities.Both the
wall distanceand magnitudeof the overshootseem to decreasewith
successive decreases in ®=Re. These trends are further con� rmed
in Fig. 6b where, due to comparable sizes of ® and Re, signi� cant
overshoot values in the pressure drop are realized at increasingdis-
tances from the wall. Consistent with Eq. (52), the axial pressure
diminishes in a parabolic fashion along the axis of the tube. Its de-
pendence on ®=Re follows the same physical arguments presented
earlier.

Fig. 6a In� uence of the injection Reynolds number on the radial pres-
sure distribution for ——, Re = 100; – – – , Re = 500; and –·– , Re = 1000.

Fig. 6b Radial pressure distribution at a moderate injection Reynolds
number and a range of regression rates: ——, 0; – – –, 20; - - - -, 40; –·–,
60; -··-, 80; and · · · ·, 100.
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Fig. 7a In� uence of the injection Reynolds number on the wall shear
stress for a moderate regression rate and ——, Re = 100; – – – , Re = 500;
and –·– , Re = 1000.

Fig. 7b Wall shear stress at a moderate injection Reynolds number
and a range of regression rates: ——, 0; – – – , 20; - - - -, 40; –·– , 60; -··-,
80; and · · · ·, 100.

E. Wall Shear Stress
Figure 7 shows the in� uence of Reynolds number Re and ® on

the shear stress (or vorticity) along the regressing surface. For � xed
® and a range of Reynolds number Re, Fig. 7a con� rms that the
shear stress at the wall decreases with successive increases in the
Reynolds number. This is also true of mean-� ow vorticity. Thus, as
the role of viscosity is diminished, the friction force is weakened as
well.

When the Reynolds number is � xed at Re D 10 (Fig. 7b), vary-
ing the regressionrate of comparablesize leads to more appreciable
stressesat higherexpansionrates.The expansionprocessmay, there-
fore, be viewed as a mechanism that promotes higher friction at the
wall. This stress increases downstream due to the relative growth
in the parallel-to-normalvelocity ratio. The increased friction also
signals largervorticityproductionin the downstreamportionsof the
tube.

V. Conclusions
A higher-ordermean-� ow approximationis presented for an ide-

alizedrocketmotor.Besides its abilityto accountforwall regression,
the � nal solution is consistently viscous and rotational. As such, it
is suitable for use in the fundamental aeroacousticsolution that has
received much scrutiny in the past. It can also be used to investi-
gate, by way of linear stability theory, the hydrodynamic evolution
of the core-� ow shear layers. In past studies, the onset of instability
has invariably evolved from the introduction of periodic � uctua-
tions bearing the form F exp[i.kz ¡ !t/]; therein, F D sin. 1

2
¼r 2/

and (k; !) have been used to symbolize the complex wave number
and frequency of oscillations, respectively.26 Instead of analyzing
the transition to turbulence based on an inviscid function, it is now
possible to incorporate the viscous correctiongiven by Eq. (45) into
the expression for F . It may be safely argued that a more accurate
assessment of the hydrodynamic transition maps can be developed
therefrom.A more precisecharacterizationof the acousticboundary
layer can also be expected including mean-� ow adjustments in the
critical parameters leading to turbulence.29;30 Overall, the demon-
strated applicabilityof the current approximationto a broader range
of physical parameters extends its usage to problems for which
the inviscid solution deteriorates. These include high-acceleration
interceptor vehicles that utilize fast regressing propellants. They
alsoencompasscold-� ow experimentsthatinvolvemedium-to-large
injection. In the future, it is hoped that the mathematical details

provided here can be used to overcome the nonlinear behavior aris-
ing in similar equations of higher order.
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